网站首页 > 技术教程 正文
编辑导语:在日常工作中,很多时候都会用到数据分析的方法,线性回归模型看起来非常简单,但实际上它的十分重要;本文作者分享了关于如何用线性回归模型做数据分析的方法,我们一起来学习一下。
一、什么是线性回归
线性回归是利用线性的方法,模拟因变量与一个或多个自变量之间的关系;对于模型而言,自变量是输入值,因变量是模型基于自变量的输出值,适用于x和y满足线性关系的数据类型的应用场景。
线性回归应用于数据分析的场景主要有两种:
- 驱动力分析:某个因变量指标受多个因素所影响,分析不同因素对因变量驱动力的强弱(驱动力指相关性,不是因果性);
- 预测:自变量与因变量呈线性关系的预测;
模型数学形式:??=??0+??1??1+??2??2+?+????????
例如要衡量不同的用户特征对满意分数的影响程度,转换成线性模型的结果可能就是:分数=-2.1+0.56*年龄。
线性回归模型分为一元线性回归与多元线性回归:区别在于自变量的个数。
二、线性系数的计算:最小二乘法
我们知道了模型的公式,那么模型的系数是如何得来呢?我们用最小二乘法来确定模型的系数——最小二乘法,它通过最小化误差的平方和寻找数据的最佳函数匹配,利用最小二乘法可以求得一条直线,并且使得拟合数据与实际数据之间误差的平方和为最小。
将上述模型公式简化成一个四个点的线性回归模型来具体看:分数=-2.1+0.56*年龄
最小二乘法选取能使模型 误差平方和= ??1??+ ??2??+ ??3??+ ??4??最小化的直线,生成直线后即可得出模型自变量的系数和截距。
三、决定系数R方(R-squared)与调整R方
R方(适用一元线性回归)。
R方也叫决定系数,它的主要作用是衡量数据中的因变量有多准确可以被某一模型所计算解释。
公式:
离差平方和:代表因变量的波动,即因变量实际值与其平均值之间的差值平方和。
误差平方和:代表因变量实际值与模型拟合值之间的误差大小。
故R方可以解释因变量波动中,被模型拟合的百分比,即R方可以衡量模型拟合数据的好坏程度;R方的取值范围<=1,R方越大,模型对数据的拟合程度越好。
使用不同模型拟合自变量与因变量之间关系的R方举例:
R方=1 模型完美的拟合数据(100%)
R方=0.91 模型在一定程度较好的拟合数据(91%)
R方<0 拟合直线的趋势与真实因变量相反
调整R方(适用多元线性回归):
一般的R方会存在一些问题,即把任意新的自变量加入到线性模型中,都可能会提升R方的值,模型会因加入无价值的变量导致R方提升,对最终结果产生误导。
故在建立多元线性回归模型时,我们把R方稍稍做一些调整,引进数据量、自变量个数这两个条件,辅助调整R方的取值,我们把它叫调整R方;调整R方值会因为自变量个数的增加而降低(惩罚),会因为新自变量带来的有价值信息而增加(奖励);可以帮助我们筛选出更多有价值的新自变量。
- n:数据量大小(行数)->数据量越大,新自变量加入所影响越小;
- p:自变量个数->自变量个数增加,调整R方变小,对这个量进行惩罚;
一句话,调整R方不会因为模型新增无价值变量而提升,而R方会因为模型新增无价值变量而提升!通过观测调整R方可以在后续建模中去重多重共线性的干扰,帮助我们选择最优自变量组合。
R方/调整R方值区间经验判断:
- <0.3->非常弱的模型拟合
- 0.3-0.5->弱的模型拟合
- 0.5-0.7->适度的模型拟合
- >0.7->较好的模型拟合
四、线性回归在数据分析中的实战流程
我们以共享单车服务满意分数据为案例进行模型实战,想要去分析不同的特征对满意分的影响程度,模型过程如下:
1. 读取数据
2. 切分因变量和自变量、分类变量转换哑变量
3. 使用VIF去除多重共线性
多重共线性:就是在线性回归模型中,存在一对以上强相关变量,多重共线性的存在,会误导强相关变量的系数值。
强相关变量:如果两个变量互为强相关变量,当一个变量变化时,与之相应的另一个变量增大/减少的可能性非常大。
当我们加入一个年龄强相关的自变量车龄时,通过最小二乘法所计算得到的各变量系数如下,多重共线性影响了自变量车龄、年龄的线性系数。
这时候,可以使用VIF消除多重共线性:VIF=1/(1-R方),R方是拿其他自变量去线性拟合此数值变量y得到的线性回归模型的决定系数。某个自变量造成强多重共线性判断标准通常是:VIF>10
我们发现,年龄的VIF远大于10,故去除年龄这一变量,去除后重新计算剩余变量VIF发现所有均<10,即可继续。
4. 计算调整R方
5. 数据标准化
我们希望不同自变量的线性系数,相互之间有可比性,不受它们取值范围影响。
6. 拟合模型,计算回归系数
共享单车分数案例,因变量是分数,自变量是年龄、组别、城区,线性回归的结果为:分数 = 5.5 + 2.7 * 年龄 +0.48 * 对照组 + 0.04 * 朝阳区 + 0.64 * 海淀区 + 0.19 * 西城区。
7. 生成分析洞见——驱动力因素
最终产出不同用户特征对用户调研分数的驱动性排名——驱动力分数反应各个变量代表因素,对目标变量分数的驱动力强弱,驱动力分数绝对值越大,目标变量对因素的影响力越大;反之越小,驱动力分数为负时,表明此因素对目标变量的影响为负向。
8. 根据回归模型进行预测
至此,回归模型已经建好,预测就不写了,把要预测的数据x自变量导入模型即可预测y。
相信大家读完这篇文章,对线性回归模型已经有了一些了解,大家快快动起手来把模型应用到自己的实际工作中吧!
作者:赵小洛,公众号:赵小洛洛洛
本文由 @赵小洛 原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议
- 上一篇: 原理+代码|Python实战多元线性回归模型
- 下一篇: R与医学统计学·系列 | 之多元线性回归
猜你喜欢
- 2025-01-08 从头开始简单理解线性回归(附Python 实现)
- 2025-01-08 MATLAB中regress函数用法(多元线性回归)
- 2025-01-08 多元线性回归怎么做预测,excel预测产量计算教程
- 2025-01-08 基于RK3568国产处理器教学实验箱操作案例分享:一元线性回归实验
- 2025-01-08 【干货】如何最简单、通俗地理解线性回归算法?
- 2025-01-08 python机器学习:多元线性回归模型实战
- 2025-01-08 监督学习常见的一种回归算法:多元线性回归
- 2025-01-08 回归分析:线性回归、损失函数、多元线性回归及其评价指标
- 2025-01-08 R语言实战-02-多元线性回归诊断
- 2025-01-08 Matlab一秒搞定多元线性回归,包括方程,r值,因素主次
你 发表评论:
欢迎- 01-09单因素方差分析+作图
- 01-09描述性统计分析 之 均值分析
- 01-0986:重复性和再现性分析GRR(2)-GRR均值极差分析法和方差分析法
- 01-09SPC如何做方差分析,意义又在哪里?
- 01-09MedSPSS小课堂——多因素方差分析
- 01-09MedSPSS小课堂——双因素方差分析
- 01-09SPSS单因素方差分析的操作步骤及结果解读,陈老师SPSS数据分析
- 01-0914单因素方差分析:One-Way ANOVA
- 最近发表
- 标签列表
-
- sd分区 (65)
- raid5数据恢复 (81)
- 地址转换 (73)
- 手机存储卡根目录 (55)
- tcp端口 (74)
- project server (59)
- 双击ctrl (55)
- 鼠标 单击变双击 (67)
- debugview (59)
- 字符动画 (65)
- flushdns (57)
- ps复制快捷键 (57)
- 清除系统垃圾代码 (58)
- web服务器的架设 (67)
- 16进制转换 (69)
- xclient (55)
- ps源文件 (67)
- filezilla server (59)
- 句柄无效 (56)
- word页眉页脚设置 (59)
- ansys实例 (56)
- 6 1 3固件 (59)
- sqlserver2000挂起 (59)
- vm虚拟主机 (55)
- config (61)
本文暂时没有评论,来添加一个吧(●'◡'●)