网站首页 > 技术教程 正文
本文讨论了线性回归的基础知识及其在 Python 编程语言中的实现。 线性回归是一种统计方法,用于对因变量与一组给定的自变量之间的关系进行建模。
注意:在本文中,为简单起见,我们将因变量称为标签,将自变量称为特征。 为了提供对线性回归的基本理解,我们从线性回归的最基本版本开始,即Simple linear regression。
简单线性回归
简单线性回归是一种使用单一特征预测标签的方法。假设这两个变量是线性相关的。因此,我们试图找到一个线性函数,它尽可能准确地预测标签值 (y) 作为特征或自变量 (x) 的函数。让我们考虑一个数据集,其中每个特征 x 都有一个标签值 y:
68b56fb0cd5ca_OZFe9y
为了一般性,我们定义: x 为特征向量,即 x = [x_1, x_2, …., x_n], y 为标签向量,即 y = [y_1, y_2, …., y_n] 对于n 个观测值(在上例中, n=10). 上述数据集的散点图如下所示:
我们在小数据集上的 Python 实现
import numpy as np
import matplotlib.pyplot as plt
def estimate_coef(x, y):
# number of observations/points
n = np.size(x)
# mean of x and y vector
m_x = np.mean(x)
m_y = np.mean(y)
# calculating cross-deviation and deviation about x
SS_xy = np.sum(y*x) - n*m_y*m_x
SS_xx = np.sum(x*x) - n*m_x*m_x
# calculating regression coefficients
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1*m_x
return (b_0, b_1)
def plot_regression_line(x, y, b):
# plotting the actual points as scatter plot
plt.scatter(x, y, color = "m",
marker = "o", s = 30)
# predicted response vector
y_pred = b[0] + b[1]*x
# plotting the regression line
plt.plot(x, y_pred, color = "g")
# putting labels
plt.xlabel('x')
plt.ylabel('y')
# function to show plot
plt.show()
def main():
# observations / data
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])
# estimating coefficients
b = estimate_coef(x, y)
print("Estimated coefficients:\nb_0 = {} \
\nb_1 = {}".format(b[0], b[1]))
# plotting regression line
plot_regression_line(x, y, b)
if __name__ == "__main__":
main()
输出:
估计系数:
b_0 = -0.0586206896552
b_1 = 1.45747126437
获得的图表如下所示:
多元线性回归
如前所述,最小二乘法倾向于确定总残差最小的。 我们在这里直接给出结果:
其中 ' 表示矩阵的转置,而 -1 表示逆矩阵。 知道最小二乘估计 b',多元线性回归模型现在可以估计为:
其中是估计的标签向量。 注意:可以在此处找到在多元线性回归中获得最小二乘估计的完整推导。
使用 Scikit-learn 对波士顿房价数据集进行多元线性回归技术的 Python 实现。
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model, metrics
# load the boston dataset
boston = datasets.load_boston(return_X_y=False)
# defining feature matrix(X) and response vector(y)
X = boston.data
y = boston.target
# splitting X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,
random_state=1)
# create linear regression object
reg = linear_model.LinearRegression()
# train the model using the training sets
reg.fit(X_train, y_train)
# regression coefficients
print('Coefficients: ', reg.coef_)
# variance score: 1 means perfect prediction
print('Variance score: {}'.format(reg.score(X_test, y_test)))
# plot for residual error
## setting plot style
plt.style.use('fivethirtyeight')
## plotting residual errors in training data
plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train,
color = "green", s = 10, label = 'Train data')
## plotting residual errors in test data
plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test,
color = "blue", s = 10, label = 'Test data')
## plotting line for zero residual error
plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2)
## plotting legend
plt.legend(loc = 'upper right')
## plot title
plt.title("Residual errors")
## method call for showing the plot
plt.show()
输出:
Coefficients:
[ -8.80740828e-02 6.72507352e-02 5.10280463e-02 2.18879172e+00 -1.72283734e+01 3.62985243e+00
2.13933641e-03 -1.36531300e+00 2.88788067e-01 -1.22618657e
-02 -8.36014969e -01 9.53058061e-03
-5.05036163e-01]
方差得分:0.720898784611
残留误差图如下所示:
下面给出了线性回归模型对应用它的数据集所做的基本假设:
- 线性关系:标签和特征变量之间的关系应该是线性的。可以使用散点图测试线性假设。如下所示,第一个图表示线性相关的变量,而第二个和第三个图中的变量很可能是非线性的。因此,第一个图将使用线性回归给出更好的预测。
- 很少或没有多重共线性:假设数据中很少或没有多重共线性。当特征(或自变量)彼此不独立时,就会出现多重共线性。
- 很少或没有自相关:另一个假设是数据中很少或没有自相关。当残差彼此不独立时,就会出现自相关。
- 同方差性:同方差性描述了一种情况,其中误差项(即自变量和因变量之间关系中的“噪声”或随机扰动)在自变量的所有值中都相同。如下所示,图 1 具有同方差性,而图 2 具有异方差性。
- 上一篇: MATLAB中regress函数用法(多元线性回归)
- 下一篇: 常用数据分析方法:方差分析怎么做?
猜你喜欢
- 2025-01-08 MATLAB中regress函数用法(多元线性回归)
- 2025-01-08 多元线性回归怎么做预测,excel预测产量计算教程
- 2025-01-08 基于RK3568国产处理器教学实验箱操作案例分享:一元线性回归实验
- 2025-01-08 【干货】如何最简单、通俗地理解线性回归算法?
- 2025-01-08 python机器学习:多元线性回归模型实战
- 2025-01-08 监督学习常见的一种回归算法:多元线性回归
- 2025-01-08 回归分析:线性回归、损失函数、多元线性回归及其评价指标
- 2025-01-08 R语言实战-02-多元线性回归诊断
- 2025-01-08 Matlab一秒搞定多元线性回归,包括方程,r值,因素主次
- 2025-01-08 回归系列(四)| 一个完整的线性回归是怎样做的?
你 发表评论:
欢迎- 01-09单因素方差分析+作图
- 01-09描述性统计分析 之 均值分析
- 01-0986:重复性和再现性分析GRR(2)-GRR均值极差分析法和方差分析法
- 01-09SPC如何做方差分析,意义又在哪里?
- 01-09MedSPSS小课堂——多因素方差分析
- 01-09MedSPSS小课堂——双因素方差分析
- 01-09SPSS单因素方差分析的操作步骤及结果解读,陈老师SPSS数据分析
- 01-0914单因素方差分析:One-Way ANOVA
- 最近发表
- 标签列表
-
- sd分区 (65)
- raid5数据恢复 (81)
- 地址转换 (73)
- 手机存储卡根目录 (55)
- tcp端口 (74)
- project server (59)
- 双击ctrl (55)
- 鼠标 单击变双击 (67)
- debugview (59)
- 字符动画 (65)
- flushdns (57)
- ps复制快捷键 (57)
- 清除系统垃圾代码 (58)
- web服务器的架设 (67)
- 16进制转换 (69)
- xclient (55)
- ps源文件 (67)
- filezilla server (59)
- 句柄无效 (56)
- word页眉页脚设置 (59)
- ansys实例 (56)
- 6 1 3固件 (59)
- sqlserver2000挂起 (59)
- vm虚拟主机 (55)
- config (61)
本文暂时没有评论,来添加一个吧(●'◡'●)