分享免费的编程资源和教程

网站首页 > 技术教程 正文

WebRTC 入门教程:WebRTC信令控制与STUN/TURN服务器搭建

goqiw 2024-10-12 19:47:38 技术教程 10 ℃ 0 评论

前面的文章中已经向大家介绍了如何构建信令服务器。但构建的信令服务器是如何工作的?哪些消息需要信令服务器控制和中转?这些此前并没有做详细的说明,而本文将对这些问题做详细的讨论。

另一方面,在真实的网络中,WebRTC是如何进行NAT穿越的呢?如果穿越不成功,我们又该如何保证用户服务的呢?这些知识也将在本文中给出答案。

信令

WebRTC 信令控制的架构图如下所示:

信令服务器用于交换三种类型的信息:

会话控制消息:初始化/关闭,各种业务逻辑消息以及错误报告。

网络相关:外部可以识别的IP地址和端口。

媒体能力:客户端能控制的编解码器、分辩率,以及它想与谁通讯。

下面我们就来详细讨论一下这三类消息:

会话控制消息

会话控制消息比较简单,像房间的创建与销毁、加入房间、离开房间、开启音频/关闭音频、开启视频/关闭视频等等这些都是会话控制消息。

对于一个真正商业的WebRTC信令服务器,还有许多的会话控制消息。像获取房间人数、静音/取消静音、切换主讲人、视频轮询、白板中的画笔、各种图型等等。但相对来说都是一引起比较简单的消息。

在我们之前的例子中,服务端只处理了一个会话消息 create or join,即房间的创建与加入消息。代码如下:

...
socket.on('create or join', function(room) {
    var clientsInRoom = io.sockets.adapter.rooms[room];
    var numClients = clientsInRoom ? Object.keys(clientsInRoom.sockets).length : 0;
    if (numClients === 0) {
      socket.join(room);
      logger.debug('Client ID ' + socket.id + ' created room ' + room);
      socket.emit('created', room, socket.id);
    } else if (numClients === 1) {
      io.sockets.in(room).emit('join', room);
      socket.join(room);
      socket.emit('joined', room, socket.id);
      io.sockets.in(room).emit('ready');
    } else { // max two clients
      socket.emit('full', room);
    }
});
  
...


该代码的逻辑非常简单,当收到 create or join 消息后,判断房间里当前人数,如果房间里的人数为 0,说明是第一个人进来,此时,需要向连接的客户端发送 created 消息;如果房间里的人数为 1,说明是第二个人进来,需要向客户端发送 joined消息;否则发送 full 消息,说明房间已满,因为目前一个房间最多只允许有两个人。

网络信息消息

网络信息消息用于两个客户端之间交换网络信息。在WebRTC中使用 ICE 机制建立网络连接。

在WebRTC的每一端,当创建好 RTCPeerConnection 对象,且调用了setLocalDescription 方法后,就开始收集 ICE候选者 了。

在WebRTC中有三种类型的候选者,它们分别是:

主机候选者

反射候选者

中继候选者

主机候选者,表示的是本地局域网内的 IP 地址及端口。它是三个候选者中优先级最高的,也就是说在 WebRTC 底层,首先会偿试本地局域网内建立连接。

反射候选者,表示的是获取 NAT 内主机的外网IP地址和端口。其优先级低于 主机候选者。也就是说当WebRTC偿试本地连接不通时,会偿试通过反射候选者获得的 IP地址和端口进行连接。

其结构如下图所示:

在上面这幅图中可以看到,WebRTC通过 STUN server 获得自己的外网IP和端口,然后通过信令服务器与远端的WebRTC交换网络信息。之后双方就可以尝试建立 P2P 连接了。

以上就是我们通常所说的 P2P NAT 穿越。在WebRTC内部会探测用户的 NAT 类型,最终采用不同的方法进行 NAT 穿越。不过,如果双方都是 对称NAT 类型,是无法进行 P2P NAT 穿越的,此时只能使用中继了。

中继候选者,表示的是中继服务器的IP地址与端口,即通过服务器中转媒体数据。当WebRTC客户端通信双方无法穿越 P2P NAT 时,为了保证双方可以正常通讯,此时只能通过服务器中转来保证服务质量了。

所以 中继候选者的优先级是最低的,只有上述两种候选者都无法进行连接时,才会使用它。

在 WebRTC 信令服务器端,收到网络消息信令,即 message 消息时,不做任何处理,直接转发。代码如下:

socket.on('message', function(message) {
     socket.broadcast.emit('message', message);
});

客户端接收到 message 消息后,会做进一步判断。如果消息类型为 candidate,即 网络消息信令时,会生成 RTCIceCandidate 对象,并将其添加到 RTCPeerConnection 对象中,从而使 WebRTC 在底层自动建立连接。 其代码如下:

socket.on('message', function(message) {
  ...
  } else if (message.type === 'candidate') {
    var candidate = new RTCIceCandidate({
      sdpMLineIndex: message.label,
      candidate: message.candidate
    });
    pc.addIceCandidate(candidate);
  } else if (...) {
    ...
  }
});


交换媒体能力消息

在WebRTC中,媒体能力最终通过 SDP 呈现。在传输媒体数据之前,首先要进行媒体能力协商,看双方都支持哪些编码方式,支持哪些分辨率等。协商的方法是通过信令服务器交换媒体能力信息。

WebRTC 媒体协商的过种如上图所示。

第一步,Amy 调用 createOffer 方法创建 offer 消息。offer 消息中的内容是 Amy 的 SDP 信息。

第二步,Amy 调用 setLocalDescription 方法,将本端的 SDP 信息保存起来。

第三步,Amy 将 offer 消息通过信令服务器传给 Bob。

第四步,Bob 收到 offer 消息后,调用 setRemoteDescription 方法将其存储起来。

第五步,Bob 调用 createAnswer 方法创建 answer 消息, 同样,answer 消息中的内容是 Bob 的 SDP 信息。

第六步,Bob 调用 setLocalDescription 方法,将本端的 SDP 信息保存起来。

第七步,Bob 将 anwser 消息通过信令服务器传给 Amy。

第八步,Amy 收到 anwser 消息后,调用 setRemoteDescription 方法,将其保存起来。

通过以上步骤就完成了通信双方媒体能力的交换。

上以就是信令服务器应该处理的所有消息,这些消息组成了信令服务器最基本的信令,每一个都必不可少,否则的话双方就无法进行最终的通信了。

在WebRTC 通讯时,光有信令是远远不够的。因为 WebRTC真正要传输的是媒体数据,信令只不过是其中的一部分。在WebRTC中他会尽可能地通过P2P进行数据的传输,但在 P2P穿越不成功时怎么办呢?

那就需要通过媒体中继服务器进行媒体数据的转发,下面我们就来看一下如何搭建媒体中继服务器吧。

搭建 STUN/TURN

在公网搭建一套 STUN/TURN 服务并不难。首先要有一台云主机,云主机的话我就不做介绍了,大家去某个云厂商购买就好了。

目前比较流行的 STUN/TURN 服务器是 coturn,使用它搭建 STUN/TURN 服务非常的方便。

下面我们就来看一下它的基本步骤:

获取 coturn 源码

git clone https://github.com/coturn/coturn.git

编译安装

cd coturn
  ./configure --prefix=/usr/local/coturn
  sudo make -j 4 && make install


配置 coturn

网上有很多关于 coturn 的配置文章,搞得很复杂。大多数人都是从网上拷贝转发的,其中有很多错误。其实只要使用 coturn 的默认设置就可以了,我这里整理了一份,如下:

listening-port=3478        #指定侦听的端口
  external-ip=39.105.185.198 #指定云主机的公网IP地址
  user=aaaaaa:bbbbbb         #访问 stun/turn服务的用户名和密码
  realm=stun.xxx.cn          #域名,这个一定要设置

所以,只需将上面 4 行配置项写入到 /usr/local/coturn/etc/turnserver.conf 配置文件中,你的 stun/turn 服务就配置好了。

启动 stun/turn 服务

cd /usr/local/coturn/bin
  turnserver -c ../etc/turnserver.conf


测试 stun/turn 服务

打开 trickle-ice ,按里面的要求输入 stun/turn 地址、用户和密码后就可以探测stun/turn服务是否正常了。

以我们的配置为例,输入的信息分别是:

STUN or TURN URI 的值为: turn:stun.xxx.cn

用户名为: aaaaaa

密码为: bbbbbb

测试的结果如下图所示:

从上图我们可以看到该服务提供了 stun(srflx)和turn(relay)两种服务。

STUN/TURN布署好后,我们就可以使用它进行多媒体数据的传输了,再也不怕因为 NAT 和防火墙的原因导致双方无法通信的问题了。

小结

本文首先向大家详细介绍了 WebRTC 三种类型信令消息的控制与交换。然后给出了 STUN/TURN 服务器的布署、配置以及如何进行测试。

这里需要特别强调的是,STUN/TURN的布署虽然非常简单,但像 WebRTC 一样,其背后的原理却很复杂。由于篇幅的原因,我这里并没有向大家做详细的介绍,感兴趣的同学可以将其做为了一切入点进行深入的研究。

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表