网站首页 > 技术教程 正文
Dijkstra 算法
Dijkstra 算法与BFS算法的区别就是 : 从容器中弹出接下来要访问的节点的规则不同
BFS 弹出: 层级最浅的原则,队列里最下方的元素
Dijkstra 弹出: 代价最小的节点g(n)
g(n) :表示的是从开始节点到当前n节点的代价累加
Dijkstra在扩展的时候,同时考虑从n节点扩展所有可扩展节点的代价g(),如果某个节点m的代价g(m)比g(n)要小,则更新当前代价为g(m)
Dijkstra的最优性保证:图运行的过程中,任何一个被扩展或者访问的节点,保证存储的代价g()值是从起点节点开始到当前节点的最小值
Dijkstra 算法 伪代码流程
维护一个优先级队列,存储所有被扩展的节点,且节点按g()值的大小自动按从小到大排列。
-优先级队列首先为空,以起始节点Xs进行初始化
-起始节点g(Xs)=0,并且初始化其它节点的代价为无穷大
-循环:
1、如果队列是空的,返回false,跳出循环
2、弹出优先级队列中代价最小的节点n
3、标记节点n为被扩展节点
4、如果节点n为目标节点,返回true,跳出循环
5、找到n节点周围可以扩展的所以节点(没被扩展过)m
6、进行判断 如果g(m)为无穷大(说明其它节点也没发现过m),
7、则计算 真正的g(m)=g(n)+Cnm,然后将m节点加入到优先级队列中
8、进行判断 如果g(m)不为无穷大,有值了(说明其它节点发现过m,m已经在优先级队列中)
9、再次进行判断 如果之前发现m时计算的g(m)比g(n)+Cnm大的话
10、更新g(m)=g(n)+Cnm。
11、重复循环至步骤1
-结束循环
Dijkstra 算法步骤示例
以这个图将Dijkstra 算法运行的步骤进行一个示例:
1、首先初始化队列,将起始节点放入优先级队列中
2、弹出起始节点
3、扩展弹出节点周围的节点
起始节点S可以扩展到子节点d\e\p,并且计算各节点的g值
4、将扩展的节点加入到优先级队列中,并且进行排序
g(p)最小,放到队列最前面,也就是图中的最下面,然后是d,最后是e。
5、弹出最小的g值节点
也就是p节点
然后循环至步骤3,直至结束
Dijkstra算法的优劣分析
- 优点:完备的(如果问题有解,一定能找到解);最优的(找到的解一定是最优的)
- 缺点:没有目标终点方向的,只是比广度搜索多了一个代价值判断,如果每个边的代价都是1的话,那么就变成了广度搜索。
针对该缺点,与之对应的就是启发式搜索,例如贪心算法,根据到目标的进行一个启发式搜索。
如果Dijkstra的最优性与启发式搜索结合,使搜索具有方向性时,也就是 A*算法了。
A*算法
A_算法与Dijkstra算法的框架是完全一样的,**A_算法就是有启发性的Dijkstra算法**
代价函数:g(n) 表示的是从开始节点到当前n节点的代价累加
启发函数:h(n) 表示当前节点到目标节点估计所花的代价
优先级队列:维护的是 代价函数+启发函数的 节点从小到大排序 f(n)=g(n)+h(n)
每次弹出的节点就是最小的f(n)值的节点。
A*算法伪代码
维护一个优先级队列,存储所有被扩展的节点,且节点按f()值的大小自动按从小到大排列。
-所以节点的启发值h(n)是为被定义的,是不知道的,到具体的节点再计算
-优先级队列首先为空,以起始节点Xs进行初始化
-起始节点g(Xs)=0,并且初始化其它节点的代价为无穷大
-循环:
1、如果队列是空的,返回false,跳出循环
2、**弹出优先级队列中f(n)最小的节点n** [唯一与djikstra不同的地方]
3、标记节点n为被扩展节点
4、如果节点n为目标节点,返回true,跳出循环
5、找到n节点周围可以扩展的所以节点(没被扩展过)m
6、进行判断 如果g(m)为无穷大(说明其它节点也没发现过m),
7、则计算 真正的g(m)=g(n)+Cnm,然后将m节点加入到优先级队列中
8、进行判断 如果g(m)不为无穷大,有值了(说明其它节点发现过m,m已经在优先级队列中)
9、再次进行判断 如果之前发现m时计算的g(m)比g(n)+Cnm大的话
10、更新g(m)=g(n)+Cnm。
11、重复循环至步骤1
-结束循环
A* 算法步骤示例
下面是一个A_算法的演示图,每个边有个预先设置的代价g,每个节点有提前估计好的启发f
以这个图将A_ 算法运行的步骤进行一个示例:
1、首先初始化队列,将起始节点放入优先级队列中
2、弹出起始节点
可扩展的节点仅有a节点,计算f(a)=g(a)+h(a)=1+5=6
3、将扩展的节点放入优先级队列
4、弹出f最小节点,扩展周围节点
弹出a节点,a节点周围可以扩展的节点为 b\d\e 。并且根据g与h值计算f值
5、根据f值大小,压入队列中
d节点的f(d)=6最小,它在最下方。
猜你喜欢
- 2024-10-25 AMEYA360报道:智能扫地机器人 SLAM技术与A算法
- 2024-10-25 基于LFOA算法的相关向量机核参数优化
- 2024-10-25 定积分的换元法与分部积分法 定积分的换元和分部
- 2024-10-25 Apriori算法是什么?适用于什么情境?
- 2024-10-25 用Python写一个A*搜索算法含注释说明
- 2024-10-25 浅谈什么是分治算法 浅谈什么是分治算法是什么
- 2024-10-25 技术分享 | Prometheus避障—A_star算法代码阅读
- 2024-10-25 浅析机器人学位置与姿态之坐标系绕任意轴线旋转算法
- 2024-10-25 一文简介常见的机器学习算法 常见机器学习算法
- 2024-10-25 欧几里得算法 最大公约数欧几里得算法
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- sd分区 (65)
- raid5数据恢复 (81)
- 地址转换 (73)
- 手机存储卡根目录 (55)
- tcp端口 (74)
- project server (59)
- 双击ctrl (55)
- 鼠标 单击变双击 (67)
- debugview (59)
- 字符动画 (65)
- flushdns (57)
- ps复制快捷键 (57)
- 清除系统垃圾代码 (58)
- web服务器的架设 (67)
- 16进制转换 (69)
- xclient (55)
- ps源文件 (67)
- filezilla server (59)
- 句柄无效 (56)
- word页眉页脚设置 (59)
- ansys实例 (56)
- 6 1 3固件 (59)
- sqlserver2000挂起 (59)
- vm虚拟主机 (55)
- config (61)
本文暂时没有评论,来添加一个吧(●'◡'●)