分享免费的编程资源和教程

网站首页 > 技术教程 正文

一线工程师总结Ansys Workbench实例之——梁单元静力学分析(下)

goqiw 2024-11-09 12:46:24 技术教程 13 ℃ 0 评论

Ansys Workbench工程实例之——梁单元静力学分析

接上文

2 实例详解

实例1,25×16×3的角钢焊接而成的直角三角架边长分别为300,400,500。固定300的一边,在顶点处加载竖直向下的1000N力,计算变形和应力。

Step1 本例模型简单,可以直接在DM中建立模型。

打开Workbench,将工具箱中的Static Structural (结构静态)拖动到显示窗口,建立新项目。

右击项目的第三行,选择使用DM新建。

在DM中,在任意基准面绘制300×400的直角三角形。然后退出草图。

提取草图线条:选择菜单栏Concept——Lines From Sketche。直接选择特征树中的草图,提取草图全部线条,点击Generate生成空间线条。然后隐藏原草图。

定义梁截面形状:选择菜单栏Concept——Cross Section,选择预定义的L Section,设置尺寸如下。绿色箭头为截面主方向。

赋予截面:选择特征树中的线体,即可为线段赋予截面。

显示梁形状与方向:勾选View——Cross Section Solids可显示截面图形,勾选View——Cross Section Solids可显示梁线体截面方向,绿色箭头为主方向。

截面方向更改:可以看到上图中,角钢截面方向不对,如何修改呢?首先勾选勾选View——Cross Section Solids使线条截面方向显示出来,绿色箭头为主方向,可见线条的主方向不正确。选择线条过滤器,再选择一条,在属性窗口中,Reverse Orientation?修改为yes,梁的方向反转,其余两条梁线同样设置。

修改后如下图。

由于只有一条线体(三条线段组成的一个线体),所以只有一个零件。如果读者是使用三条线体组合的,那么需要使用Form New Part功能把它们组合成一个几何体。

Step2 进入Mechanical划分网格,施加边界条件。

Step3 计算与后处理。

计算后可直接添加变形结果。

应力结果需要从Beam Tool中添加,右击Solution——Insert——Beam Tool——Beam Tool

变形结果与最大组合应力云图如下。

实例2 在上例中,梁之间的连接改为可转动的铰接,其他条件不变,计算变形和应力。

Step1 使用DM建模,由于在梁连接处需要设置铰接,所以不能创建为一个线体,而需要创建为3条独立线体。

在DM的XY平面绘制三角形,同实例1。

提取草图线条:选择菜单栏Concept——Lines From Points或3D Curve选择三角形的两个顶点,Add Frozen,可以创建多个线几何体。

然后通过From New Part使三个线体组成一个零件,此时它们的接头处相当于焊接在一起。

截面赋予及方向修改同实例1。

Step2 进入Mechanical,设置铰接点,划分网格,施加边界条件。

本例采用了From New Part多体零件,每条梁的末端刚性连接(焊接)在一起,所以需要使用末端释放功能解除端点的某一方向的转动自由度,本例释放的是三个端点的Z向旋转自由度。设置方法见1.2.1。

网格划分同实例1。

边界添加与实例稍有不同,采用了末端释放的模型不能施加Fixed Support约束,所以此处使用远端位移约束代替固定约束,施加在竖梁上,并设置6向约束。

本例并未约束横梁与斜梁的X与Y向的旋转自由度,也可正常计算,因为本例只释放了三个端点的Z方向的旋转自由度,X与Y向的旋转自由度并未释放,还是刚性约束。如果读者是使用三条线体,通过Body-Body——Revolute创建的Joint铰接,则需要约束这两条梁的X与Y向的旋转自由度。

Step3 计算与后处理。

结果添加方法同实例1,计算云图如下。各梁没有弯曲应力,只有直接应力。

实例3 如下模型的悬臂梁为直径为20mm的圆钢,a=0.5m,F=100N,计算弯矩与剪力,对比梁的冯米斯等效应力与组合应力。

Step1 使用DM建模,建立两条独立线体,它们相互共线,每条长度0.5m,线体的截面为R10的圆。使用From New Part组合两条梁。







Step2 进入Mechanical,划分网格,施加边界条件。

固定梁左端,在中间节点施加-Y方向的100N的力,在右端施加Z方向的集中例偶Me=F*a=50Nm=50000Nmm。再给梁施加X与Y向的转动约束(可省略)。

网格划分略。

Step3 计算与后处理。


(1)弯矩云图与剪力云图的添加。

选择工具栏Beam Results——Bending Moment和Shear Force。我们主要关系Z向的弯矩与Y向的剪力,所以属性设置如下

云图分别如下:

(2)剪力-弯矩图结果的添加。

剪力-弯矩图只能以路径Path为对象建立,所以添加它之前需要先建立路径:选中特征树的Model,再点击工具栏Construction Geometry工具,在特征树中便添加了Construction Geometry组,右击它——Insert——Path,便添加了路径Pach,在属性中设置,Path Type:Edge,在Geometry选择两条线体。

在结果中,选择工具栏Beam Results——Shear-Moment Diagram,Path中选择刚才定义的路径。Type中选择~~~(VY-MZ-UY),表示剪力沿Y方向,弯矩沿Z方向,变形位移沿Y方向(若选择~~~(VZ-MY-UZ)则表示剪力沿Z方向,弯矩沿Y方向,变形位移沿Y方向)。Graphics Display表示云图结果显示,不影响剪力-弯矩图表显示。

剪力云图如下:

这与本例中的Beam Results——Shear Force云图结果是一样的,只是此处只显示梁线,不显示截面形状。

剪力-弯矩图如下。从上到下分别是剪力图、弯矩图,变形位移图。

在与《材料力学》对比计算结果时,需要注意弯矩的正负方向,如果弯矩所选的方向Z是垂直屏幕指向外,则弯矩的正负方向与上图一致,若是垂直屏幕指向内,则需要将上图中的弯矩正负反向。

(3)等效应力与组合应力的添加

添加截面应力前需要先设置Beam Section Results (梁截面的结果):选中特征树中的Solution,在属性中找到Pose Processiong项目下的Beam Section Results,参数修改为Yes即可,详见1.4.3。

选择工具栏Stress——Equivalent Stress(冯米斯等效应力)。

选择工具栏Beam Tool——Maximum Combined Stress、Minimum Combined Stress添加最大、最小组合应力。

冯米斯等效应力云图如下,读者可自行与实体模型计算结果做对比。

Beam Tool——Maximum Combined Stress云图如下

Beam Tool——Minimum Combined Stress云图如下

由上图等效应力与组合应力结果可知,在梁的弯曲中,等效应力与组合应力最大值相近,但是组合应力需要读者自行判断最大值(表面处于受拉状态)与最小值(表面处于受压状态)出现在梁的上下哪一侧,而等效应力只显示绝对值,不显示正负,所以也需要读者自行判断哪一侧受拉,哪一侧受压。

另外,弯曲切应力无法通过Stess——Sheart添加,Sheart用于计算计算扭转切应力,见下例。

实例4 汽车转向轴为Φ40X2X600的空心轴,两端受到最大扭矩为Me=100Nm,材料的屈服强度为σs=350Mpa,安全系数取[S]=6。校核扭转切应力,并计算轴的扭转角。

Step1 使用DM建模,创建1条长度为600mm的线体。

给线体赋予截面形状,截面为圆管circular Tube,内圆半径18mm,外圆半径20mm。

Step2 进入Mechanical,划分网格,施加边界条件。

给轴的一端施加Simply Supported+Fixed Rotation约束(也可施加Fixed Supported约束),另一端施加轴向(本例轴向为X)的100000Nmm的扭矩。

Step3 结果与后处理。

(1)应力校核

要查看扭转变形与扭转应力,需要先设置Solution属性中的Beam Section Results,参数修改为Yes即可。

选择工具栏Stress——Equivalent Stress(冯米斯等效应力)、Shear Stress(切应力)、Intensity(应力强度),由于切应力不好直接与材料的抗拉屈服强度做对比,所以根据第三强度理论,引入了Intensity。在数值上Intensity=2*Shear Stress,所以Shear Stress是切应力的计算值,Intensity是切应力应用第三强度理论的等效值。理论上若Intensity<屈服强度,则切应力不会引起构建的塑性变形。

Equivalent Stress云图如下,最大应力≈40.1Mpa

Shear Stress云图如下,最大应力≈23.2Mpa

Intensity云图如下,最大应力≈46.4Mpa

若按第四强度校核:安全系数=σs/Equivalent Stress=350/40.1=8.7>[S],材料校核合格。

若按第三强度校核:安全系数=σs/Intensity=350/46.4=7.5>[S],材料校核合格。

(2)扭转角计算

总变形与方向变形只显示位移量,并不能显示转动角度,如下总变形云图。

扭转角度可以通过Flexible Rotation+远程点计算得到,操作如下。

选中特征树的Model,在工具栏选择远程点Remote Point,属性中的Geometry选择梁线的扭转端点,注意检查属性中X/Y/Z坐标是否正确。

选中特征树的Solution,在工具栏选择远程点Probe——Flexible Rotation,属性中Location Method选择Remote Points,在下方选择刚刚设置的远程点名称。Result Section需要选择扭转的轴向,本例为X方向。

计算后如下,扭转角≈0.52°

(3)扩展知识

使用《材料力学》中的计算方法校核以上计算的应力与扭转角。

扭转切应力的计算:最大切应力τ=T/Wt,其中T为扭矩100000Nmm,Wt为抗扭截面系数。对于圆管Wt=π(D^4-d^4)/(16D)=4321.6mm3,所以

τ=T/Wt=23.15Mpa

与上文的Shear Stress云图最大应力≈23.2Mpa相近。

扭转角度的计算:扭转角度φ=T*L/(G*It)*(180/π),其中梁长度L=600mm,G为扭转刚度,本例G=76000Mpa,极惯性矩It=π(D^4-d^4)/32=86431.5mm^4,所以

φ=T*L/(G*It)*(180/π)=0.52°

与上文Flexible Rotation结果相近。

本例还可扩展为弯扭组合变形,请读者自行操作。

实例5 以下U形零件材料为结构钢,使用M6的螺栓夹紧两端,螺栓预紧力1000N,计算U形零件变形与应力。

Step1 在DM中建模,模型尺寸见下图。螺栓不用建模,但是需要在通孔处作Φ12的映射面,模拟垫圈与零件的接触关系。

Step2 进入Mechanical,添加螺栓连接,划分网格,设置边界条件。

在特征树种添加Connections,再右击Connections——Insert——Beam添加梁连接。属性中设置梁半径3mm,选中螺栓接触面。

添加预紧力:在边界条件中对梁连接添加螺栓预紧力Bolt Pretension,如下图。

网格划分:设置网格尺寸,使网格在模型厚度方向至少有2层单元。再对R3的圆角处设置局部网格尺寸0.5mm。

设置其他边界条件:用远程约束固定零件左侧背面。

Step2 计算与后处理,变形与等效应力云图如下。

实例6 复杂模型的梁单元前处理:如下图从外部CAD导入的框架模型,请在Workbench中转换为梁模型。

Step1 模型导入。

在Workbench中新建项目,将模型导入到项目Geometry中,再使用SpaceClaim编辑。

Step2 梁线自动抽取。

选择菜单工具——抽取,再框选全部模型,即可完成所有梁的抽线。如果不成功,可以逐个选取。

以上抽取的梁已经含有了截面形状(特征树中可查看),无需再次定义截面。选择显示工具,可在线型与实体之间切换显示。

Step3 梁线修剪。

以上梁单元不能直接使用,因为自动处理的梁之间的接头处是分离的,必须使他们结合。

选择连接工具,设置合适的容差,在图形中分离的节点将高亮显示,点击√直到接头无高亮提示。

有时还需要我们手动拖动节点,选择菜单栏设计——移动,选中要移动的端点,然后点击下图箭头所指图标(或快捷键U),点击要移动目标位置的点。

修整后如下图。

Step3 拓扑节点共享。

从上图可知,模型中有很多T形接头可十字接头,需要增加耦合节点。

选中特征树的总文件夹,在属性中设置共享拓扑为共享或合并。

可在Mechnial中查看节点等

注意1,通过以上方法制作的梁模型不能通过DM修改,否则截面形状将消失,需要在DM中重新定义。

注意2,在Step2梁线自动抽取过程中,某些梁可能会因为种种原因不能成功识别与抽取,在特征树中找到它,右击删除。

有时也需要临时添加梁。

在轮廓中选择要添加的截面形状,如果没有想要的轮廓,可以在下方新轮廓库中选择,或者最下方标准库中调用。

新轮廓可通过右击特征树中的轮廓——编辑横梁轮廓来修改尺寸,此时或增加一个图形窗口,修改完成后点击第一个窗口便签便可返回

选择轮廓后,点击创建,点击两个端点,便创建了一条空间梁线。

选择定向,再选择梁线,可改变轮廓方向。

写在最后:

梁单元求解速度快,资源占用少,但是不能求解局部应力集中,复杂截面也难以定义。在进行梁单元求解时,往往需要先简化模型,而简化过程可能需要花费大量的时间精力处理细节问题,本文较全面地介绍了梁单元前处理与后处理,希望本文对工程师们能有所帮助。由于本人水平有限,上文难免纰漏百出,敬请指正。

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表