分享免费的编程资源和教程

网站首页 > 技术教程 正文

Ansys Workbench工程应用之——结构非线性(上):屈曲(1)

goqiw 2024-11-09 12:46:48 技术教程 19 ℃ 0 评论

Ansys Workbench工程应用之——结构非线性(上):几何非线性(4)——屈曲(1)

本文可能是您能在网络上找到得有限元计算屈曲最详细最接地气得文章。图惜原本计划将屈曲写入几何非线性一文,后来发现内容太多,所有拎出来单独做一个专题。在屈曲计算中,特别是非线性屈曲计算中,很多初学者也和图惜一样,有很多疑问,此文将针对初学者常见的问题做通俗详细的解读,其中一定有您想要的答案。

1 屈曲的概念

结构失稳即屈曲,最常见的便是压杆失稳现象。压杆稳定示意图如下,在稳定点之前,支反力呈线性增长,逐渐达到一个极值,之后支反力降低,这个极值便是屈曲极限。屈曲极限往往远小于材料的屈服强度,屈曲分析的目的在于找出结构的屈曲极限,分析出结构的安全载荷、或对结构进行相应优化设计提高屈曲极限。

分析屈曲有两类方法,一类是线性特征值屈曲,用于计算理想线性屈曲极限,一类是非线性分析,用于计算零件因初始缺陷、材料、几何、接触等引起的非线性屈曲,而非线性分析又分为前屈曲分析和后屈曲分析。很多结构设计是以理想线性屈曲极限除以一个安全系数作为设计依据,但是如果要探究结构的实际屈曲极限,有必要进行非线性屈曲分析。

特征值模态只是结构的线性特征,是结构在受荷载情况下能量最小的变形模式,不是真实变形。最终采用大变形方法计算得到的结果才是结构真正的破坏状态。

2 线性屈曲

在Ansys Workbench中,进行线性屈曲分析的是特征值屈曲模块。

线性特征值屈曲分析通过提取线性系统的刚度矩阵的奇异特征值,以获得结构临界失稳载荷以及失稳模态。

线性特征值屈曲分析不考虑初始结构缺陷与非线性因素的影响,计算较快,计算精度不如非线性屈曲,特别是对于复杂模型。但是计算的特征值对结构稳定性评价有一定帮助,例如,求解出密集排列的负载乘数,则表明该结构对初始缺陷敏感;求解出稀松排列的负载乘数,则表明该结构对初始缺陷不敏感。

需要强调的是,线性特征值屈曲计算得到的失稳模态变形结果,并不是真实结构失稳后的结构最大位移。更具体地说,通过特征值屈曲,计算出来的最大变形通常在1mm左右,并不代表这时候失稳变形就是1mm左右,特征值屈曲的变形计算结果只能作为失稳方式和这种模态下各处的相对位移变化大小。所以我们应该关心的是各阶屈曲极限(负载乘数),和这种模态下的屈曲方式。

第一阶失稳是最常见的失稳方式,在线性特征值屈曲中,通常只需要计算第一阶屈曲极限。

实例1 对1000mmx1000mmx10mm的薄板,使用默认结构钢材料。一边固定,计算另一边施加多少N的压力会使薄板失稳。

Step1 建立项目分析流程

进行线性屈曲计算之前首先必须对模型进行静力结构计算,建立“静力结构Static Structural——特征值屈曲Linear Buckling”的项目分析流程。在WB主页面的工具箱中将静态结构到项目区,再将特征值屈曲到刚才建立的静态结构的求解栏目,如下图。

Step2 建模

右击静态结构的工程结构——新Dsign Model模型,使用DM建立基于草图的曲面,长宽1000mm,厚10mm。

Step3分析前处理

进入Machaniacl界面,为模型赋予WB默认的结构钢材料。分析设置中的大变形不要打开。

划分网格:使用尺寸=50mm划分网格。

施加边界条件:固定一边,对另一边施加1N的压缩方向的力。

Step4特征值屈曲设置

在特征值屈曲菜单下,点击分析设置,将最大模态阶数改为6,表示只计算前6阶失稳形态。对于线性屈曲,一般只关心第一阶失稳,此处计算6阶是为了分析模态分布是否密集,为非线性计算做准备。

Step5求解与后处理

点击Solve求解。

点击结构树中的求解Solution,在右侧下方出现图表,显示屈曲安全倍数。本例第一阶计算值为43549,表示如果施加的力为算例中的43549倍将产生屈曲,即屈曲临近力为43549N。

第一阶变形方式如下图。

注意:特征值屈曲分析本身是一种线性分析,但是可以静态结构的预分析中设置材料非线性(如超弹性、塑形)、几何非线性(打开大变形)、接触非线性等,使屈曲分析结果更精确。例如上例中的静态结构预分析中,我们打开大变形,屈曲分析结果如下。

计算后跳出提示信息如下

第一个提示信息意思是屈曲分析设置中我们使用了默认的“保持预应力载荷=是”的选项(如果改为否,则需要我们在屈曲分析中添加节点力、节点压力、节点位移等边界条件)。

第二个提示信息意思是 屈服力=静态结构中施加的载荷*(1+倍数)。

计算值为43548,则表示:屈曲力=1N*(1+43548)=43549N。

未完待续

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表